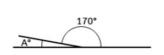
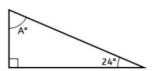

- a + 9 = 4 + 6
- B. $9 \alpha = 6 4$
- C. $\alpha \times 9 = 4 \times 6$
- D. a + 6 = 4 + 9

Which equation represents the number rods?


- \bigcirc D
- \bigcirc B \bigcirc A \bigcirc C

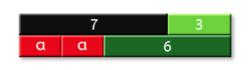
- Α. a + 9 = 10
- B. $\alpha 9 = 10$
- C. $a \times 9 = 10$
- D. $\alpha + 10 = 9$

Which equation represents the number rods?


- \bigcirc C \bigcirc B \bigcirc A

- A. A + 170 = 180
- **B.** A = 170 180
- C. A 170 = 180
- D. 180 ÷ A = 170

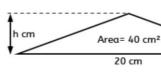
Which equation can be used to find the missing angle A?


- O D
- B C

- A. A + 90 + 24 = 180
- B. A = 180 24
- C. A = 90 + 24 180
- D. $180 = 90 \times 24 \times A$

Which equation can be used to find the missing angle A?

- \bigcirc C \bigcirc A \bigcirc B \bigcirc D



- A. $2\alpha + 6 = 7 + 3$
- B. $6 2\alpha = 7 3$
- C. $2\alpha \times 6 = 7 \times 3$
- D. $2\alpha + 7 = 6 + 3$

Which equation represents the number rods?

- \bigcirc B

- \bigcirc D \bigcirc C \bigcirc A

- A. $(20 \div 2) \times h = 40$
- B. 40 = 20 + 2h
- C. $40 = 2h \times 20$
- D. $20 = (40 \div 2) \times h$

Which equation can be used to find the length h?

- \bigcirc A \bigcirc C \bigcirc B \bigcirc D